Deep Learning Segmentation of Ascites on Abdominal CT Scans for Automatic Volume Quantification.
Benjamin HouSung-Won LeeJung-Min LeeChristopher KohJing XiaoPerry J. PickhardtRonald M SummersPublished in: Radiology. Artificial intelligence (2024)
Purpose To evaluate the performance of an automated deep learning method in detecting ascites and subsequently quantifying its volume in patients with liver cirrhosis and patients with ovarian cancer. Materials and Methods This retrospective study included contrast-enhanced and noncontrast abdominal-pelvic CT scans of patients with cirrhotic ascites and patients with ovarian cancer from two institutions, National Institutes of Health (NIH) and University of Wisconsin (UofW). The model, trained on The Cancer Genome Atlas Ovarian Cancer dataset (mean age [±SD], 60 years ± 11; 143 female), was tested on two internal datasets (NIH-LC and NIH-OV) and one external dataset (UofW-LC). Its performance was measured by the F1/Dice coefficient, SDs, and 95% CIs, focusing on ascites volume in the peritoneal cavity. Results On NIH-LC (25 patients; mean age, 59 years ± 14; 14 male) and NIH-OV (166 patients; mean age, 65 years ± 9; all female), the model achieved F1/Dice scores of 85.5% ± 6.1 (95% CI: 83.1, 87.8) and 82.6% ± 15.3 (95% CI: 76.4, 88.7), with median volume estimation errors of 19.6% (IQR, 13.2%-29.0%) and 5.3% (IQR: 2.4%-9.7%), respectively. On UofW-LC (124 patients; mean age, 46 years ± 12; 73 female), the model had a F1/Dice score of 83.0% ± 10.7 (95% CI: 79.8, 86.3) and median volume estimation error of 9.7% (IQR, 4.5%-15.1%). The model showed strong agreement with expert assessments, with r 2 values of 0.79, 0.98, and 0.97 across the test sets. Conclusion The proposed deep learning method performed well in segmenting and quantifying the volume of ascites in patients with cirrhosis and those with ovarian cancer, in concordance with expert radiologist assessments. Keywords: Abdomen/GI, Cirrhosis, Deep Learning, Segmentation Supplemental material is available for this article . © RSNA, 2024 See also commentary by Aisen and Rodrigues in this issue.
Keyphrases
- deep learning
- contrast enhanced
- end stage renal disease
- computed tomography
- chronic kidney disease
- newly diagnosed
- ejection fraction
- magnetic resonance imaging
- convolutional neural network
- machine learning
- prognostic factors
- dual energy
- emergency department
- magnetic resonance
- mental health
- peritoneal dialysis
- diffusion weighted
- clinical practice
- rectal cancer
- single cell
- risk assessment
- genome wide
- body composition
- solid phase extraction
- patient reported