Microtopography-Guided Radial Gradient Circle Array Film with Nanoscale Resolution.
Fengqiang ZhangChanghai LiJia ZhangZhenlong WangPublished in: Small (Weinheim an der Bergstrasse, Germany) (2019)
Distribution of multimaterials at arbitrary positions with nanoscale resolution and over a large area substrate is essential to future advances in functional graded materials. Such stringent requirements are highly beyond the reach of current techniques, although newly developed 3D printing technologies are addressed. Here, a radial gradient circle array film with the distribution accuracy up to ≈18 nm is fabricated by using microtopographic substrate. A mathematical model is developed to guide the distribution of position, size, shape, and type of materials on an arbitrary section for the given morphology of substrate. The periodic electrical and mechanical properties of the radial gradient circle film are identified, which can be beneficial for further functionalization and applications, such as gradient refractive index lenses, microcoils, and microantennas.