The importance of both CYP2C19 and CYP2B6 germline variations in cyclophosphamide pharmacokinetics and clinical outcomes.
Nuala Ann HelsbyM YongM van KanJ R de ZoysaKathryn Elisa BurnsPublished in: British journal of clinical pharmacology (2019)
Cyclophosphamide is an alkylating agent used in the treatment of solid and haematological malignancies and as an immunosuppressive agent. As a prodrug, it is dependent on bioactivation to the active phosphoramide mustard metabolite to elicit its therapeutic effect. This focused review will highlight the evidence for the role of germline pharmacogenetic variation in both plasma pharmacokinetics and clinical outcomes. There is a substantial indication from 13 pharmacokinetic and 17 therapeutic outcome studies, in contexts as diverse as haematological malignancy, breast cancer, systemic lupus erythematosus and myeloablation, that pharmacogenetic variation in both CYP2C19 and CYP2B6 influence the bioactivation of cyclophosphamide. An additional role for pharmacogenetic variation in ALDH1A1 has also been reported. Future studies should comprehensively assess these 3 pharmacogenes and undertake appropriate statistical analysis of gene-gene interactions to confirm these findings and may allow personalised treatment regimens.