Fibro-CoSANet: pulmonary fibrosis prognosis prediction using a convolutional self attention network.
Zabir Al NaziFazla Rabbi MashrurMd Amirul IslamShumit SahaPublished in: Physics in medicine and biology (2021)
Idiopathic pulmonary fibrosis (IPF) is a restrictive interstitial lung disease that causes lung function decline by lung tissue scarring. Although lung function decline is assessed by the forced vital capacity (FVC), determining the accurate progression of IPF remains a challenge. To address this challenge, we proposed Fibro-CoSANet, a novel end-to-end multi-modal learning based approach, to predict the FVC decline. Fibro-CoSANet utilized computed tomography images and demographic information in convolutional neural network frameworks with a stacked attention layer. Extensive experiments on the OSIC Pulmonary Fibrosis Progression Dataset demonstrated the superiority of our proposed Fibro-CoSANet by achieving new state-of-the-art modified Laplace log-likelihood score of -6.68. This network may benefit research areas concerned with designing networks to improve the prognostic accuracy of IPF. The source-code for Fibro-CoSANet is available at: https://github.com/zabir-nabil/Fibro-CoSANet.
Keyphrases
- idiopathic pulmonary fibrosis
- lung function
- interstitial lung disease
- pulmonary fibrosis
- convolutional neural network
- cystic fibrosis
- air pollution
- chronic obstructive pulmonary disease
- computed tomography
- deep learning
- working memory
- systemic sclerosis
- magnetic resonance imaging
- high resolution
- machine learning
- social media
- neural network
- health information
- image quality