Login / Signup

Cage-Based Metal-Organic Framework as an Artificial Energy Receptor for Highly Sensitive Detection of Serotonin.

Hui MinTiankai SunWenyue CuiZongsu HanPeiyu YaoPeng ChengPeng Cheng
Published in: Inorganic chemistry (2023)
Artificial synthetic receptors toward functional biomolecules can serve as models to provide insights into understanding the high binding affinity of biological receptors to biomolecules for revealing their law of life activities. The exploration of serotonin receptors, which can guide drug design or count as diagnostic reagents for patients with carcinoid tumors, is of great value for clinical medicine but is highly challenging due to complex biological analysis. Herein, we report a cage-based metal-organic framework (NKU-67-Eu) as an artificial chemical receptor with well-matched energy levels for serotonin. The energy transfer back from the analyte to the framework enables NKU-67-Eu to recognize serotonin with excellent neurotransmitter selectivity in human plasma and an ultra-low limit of detection of 36 nM. Point-of-care visual detection is further realized by the colorimetry change of NKU-67-Eu toward serotonin with a smartphone camera.
Keyphrases