Login / Signup

A C-S-C Linkage-Triggered Ultrahigh Nitrogen-Doped Carbon and the Identification of Active Site in Triiodide Reduction.

Jiangwei ChangChang YuXuedan SongXinyi TanYiwang DingZongbin ZhaoJieshan Qiu
Published in: Angewandte Chemie (International ed. in English) (2021)
An efficient chemical synthesis route, with an aim of reaching an ultrahigh nitrogen (N)-doping level in carbon materials can provide a platform where the type and amount of N dopant can be tuned over a wide range. We propose a C-S-C linkage-triggered confined-pyrolysis strategy for the high-efficiency in situ N-doping into carbon matrix and an ultrahigh doping level up to 13.5 at %, which is close to the theoretical upper limit (15.2 at %) is realized at a high carbonization temperature of 1000 °C. The pyridinic N is dominant with a maximum percent of 48.7 %. By using I3 - reduction as an example, the resultant NCM-5 exhibits the best activity with a power conversion efficiency of 8.77 %. A pyridinic N site-dependent activity is demonstrated in which the amount of active sites increases with the increase of pyridinic N, and the carbon atom adjacent to electron-withdrawing pyridinic N at the armchair edge acts as the most favorable site for the adsorption of I2 .
Keyphrases
  • high efficiency
  • gene expression
  • hiv testing
  • high throughput
  • dna methylation
  • human immunodeficiency virus
  • electron transfer
  • bioinformatics analysis
  • municipal solid waste