Login / Signup

Synthesis and characterization of a formal 21-electron cobaltocene derivative.

Satoshi TakebayashiJama AriaiUrs GellrichSergey V KartashovRobert R FayzullinHyung-Been KangTakeshi YamaneKenji SugisakiKazunobu Sato
Published in: Nature communications (2023)
Metallocenes are highly versatile organometallic compounds. The versatility of the metallocenes stems from their ability to stabilize a wide range of formal electron counts. To date, d-block metallocenes with an electron count of up to 20 have been synthesized and utilized in catalysis, sensing, and other fields. However, d-block metallocenes with more than formal 20-electron counts have remained elusive. The synthesis and isolation of such complexes are challenging because the metal-carbon bonds in d-block metallocenes become weaker with increasing deviation from the stable 18-electron configuration. Here, we report the synthesis, isolation, and characterization of a 21-electron cobaltocene derivative. This discovery is based on the ligand design that allows the coordination of an electron pair donor to a 19-electron cobaltocene derivative while maintaining the cobalt-carbon bonds, a previously unexplored synthetic approach. Furthermore, we elucidate the origin of the stability, redox chemistry, and spin state of the 21-electron complex. This study reveals a synthetic method, structure, chemical bonding, and properties of the 21-electron metallocene derivative that expands our conceptual understanding of d-block metallocene chemistry. We expect that this report will open up previously unexplored synthetic possibilities in d-block transition metal chemistry, including the fields of catalysis and materials chemistry.
Keyphrases
  • solar cells
  • electron transfer
  • electron microscopy
  • minimally invasive
  • small molecule
  • drug discovery
  • gold nanoparticles
  • single cell
  • water soluble
  • carbon nanotubes