A Novel Alteromonas Phage Lineage with a Broad Host Range and Small Burst Size.
Yahui YangRuijie MaChen YuJunlei YeXiaowei ChenLong WangNianzhi JiaoRui ZhangPublished in: Microbiology spectrum (2022)
Alteromonas is an opportunistic marine bacterium that persists in the global ocean and has important ecological significance. However, current knowledge about the diversity and ecology of alterophages (phages that infect Alteromonas ) is lacking. Here, three similar phages infecting Alteromonas macleodii ATCC 27126 T were isolated and physiologically characterized. Transmission electron microscopy revealed Siphoviridae morphology, with an oblate icosahedral head and a long noncontractile tail. Notably, these members displayed a small burst size (15-19 plaque-forming units/cell) yet an extensively broad host spectrum when tested on 175 Alteromonas strains. Such unique infection kinetics are potentially associated with discrepancies in codon usage bias from the host tRNA inventory. Phylogenetic analysis indicated that the three phages are closely evolutionarily related; they clustered at the species level and represent a novel genus. Three auxiliary metabolic genes with roles in nucleotide metabolism and putative biofilm dispersal were found in these phage genomes, which revealed important biogeochemical significance of these alterophages in marine ecosystems. Our isolation and characterization of these novel phages expand the current understanding of alterophage diversity, evolution, and phage-host interactions. IMPORTANCE The marine bacterium Alteromonas is prevalent in the global ocean with crucial ecological significance; however, little is known about the diversity and evolution of its bacteriophages that profoundly affect the bacterial communities. Our study characterized a novel genus of three newly isolated Alteromonas phages that exhibited a distinct infection strategy of broad host spectrum and small burst size. This strategy is likely a consequence of the viral trade-off between virulence and lysis profiles during phage-host coevolution, and our work provides new insight into viral evolution and infection strategies.