Login / Signup

T-DNA Tagging-Based Gain-of-Function of OsHKT1;4 Reinforces Na Exclusion from Leaves and Stems but Triggers Na Toxicity in Roots of Rice Under Salt Stress.

Yuuka OdaNatsuko I KobayashiKeitaro TanoiJian Feng MaYukiko ItouMaki KatsuharaTakashi ItouTomoaki Horie
Published in: International journal of molecular sciences (2018)
The high affinity K⁺ transporter 1;4 (HKT1;4) in rice (Oryza sativa), which shows Na⁺ selective transport with little K⁺ transport activity, has been suggested to be involved in reducing Na in leaves and stems under salt stress. However, detailed physiological roles of OsHKT1;4 remain unknown. Here, we have characterized a transfer DNA (T-DNA) insertion mutant line of rice, which overexpresses OsHKT1;4, owing to enhancer elements in the T-DNA, to gain an insight into the impact of OsHKT1;4 on salt tolerance of rice. The homozygous mutant (the O/E line) accumulated significantly lower concentrations of Na in young leaves, stems, and seeds than the sibling WT line under salt stress. Interestingly, however, the mutation rendered the O/E plants more salt sensitive than WT plants. Together with the evaluation of biomass of rice lines, rhizosphere acidification assays using a pH indicator bromocresol purple and 22NaCl tracer experiments have led to an assumption that roots of O/E plants suffered heavier damages from Na which excessively accumulated in the root due to increased activity of Na⁺ uptake and Na⁺ exclusion in the vasculature. Implications toward the application of the HKT1-mediated Na⁺ exclusion system to the breeding of salt tolerant crop cultivars will be discussed.
Keyphrases
  • single molecule
  • climate change
  • transcription factor
  • oxidative stress
  • heat stress
  • binding protein
  • positron emission tomography
  • single cell
  • wild type