Rapid NMR Assignments of Proteins by Using Optimized Combinatorial Selective Unlabeling.
Abhinav DubeyRajashekar Varma KadumuriGarima JaipuriaRamakrishna VadrevuHanudatta S AtreyaPublished in: Chembiochem : a European journal of chemical biology (2016)
A new approach for rapid resonance assignments in proteins based on amino acid selective unlabeling is presented. The method involves choosing a set of multiple amino acid types for selective unlabeling and identifying specific tripeptides surrounding the labeled residues from specific 2D NMR spectra in a combinatorial manner. The methodology directly yields sequence specific assignments, without requiring a contiguously stretch of amino acid residues to be linked, and is applicable to deuterated proteins. We show that a 2D [(15) N,(1) H] HSQC spectrum with two 2D spectra can result in ∼50 % assignments. The methodology was applied to two proteins: an intrinsically disordered protein (12 kDa) and the 29 kDa (268 residue) α-subunit of Escherichia coli tryptophan synthase, which presents a challenging case with spectral overlaps and missing peaks. The method can augment existing approaches and will be useful for applications such as identifying active-site residues involved in ligand binding, phosphorylation, or protein-protein interactions, even prior to complete resonance assignments.