Login / Signup

pH-Responsive Delivery of H2 through Ammonia Borane-Loaded Hollow Polydopamine for Intervertebral Disc Degeneration Therapy.

Weiheng WangBing XiaoYuanyuan QiuYi LiuGuoke TangGuoying DengYanhai XiGuohua XuYeying Wang
Published in: Oxidative medicine and cellular longevity (2023)
An imbalance in oxidative and inflammatory regulation is the main contributor to intervertebral disc degeneration (IDD). Hydrogen (H2) therapy is a promising antioxidation and anti-inflammatory approach. However, the key to the treatment is how to maintain the long-term effective H2 concentration in the intervertebral disc (IVD). Therefore, we developed a pH-responsive delivery of H2 through ammonia borane-loaded hollow polydopamine (AB@HPDA) for IDD therapy, which has sufficient capacity to control long-term H2 release in an acid-dependent manner in degenerative IVD. The characterization, toxicity, and pH-responsive H2 release of AB@HPDA was detected in vitro. The metabolization of AB@HPDA in the degenerated IVD was tested by in vivo imaging. The therapeutic effect of AB@HPDA on IDD was tested in vivo by X-ray, MRI, water content of the disc, and histological changes. Nuclear extracellular matrix (ECM) components, oxidative stress, and inflammation were also tested to explore potential therapeutic mechanisms. AB@HPDA has good biocompatibility at concentrations less than 500  μ g/mL. The H2 release of AB@HPDA was pH responsive. Therefore, AB@HPDAs can provide efficient hydrogen therapy with controlled H2 release in response to the acidic degenerated IVD microenvironment. The metabolization of AB@HPDA in IVD was slow and lasted up to 11 days. HPDA and AB@HPDA significantly inhibited IDD, as tested by X-ray, MRI, disc water content, and histology ( P < 0.05). pH-responsive H2 delivery through AB@HPDAs has the potential to efficiently treat IDD by inhibiting ECM degradation and rebalancing oxidative stress and inflammation in degenerative IVDs.
Keyphrases