Influence of Temperature and Sulfate Concentration on the Sulfate/Sulfite Reduction Prokaryotic Communities in the Tibetan Hot Springs.
Li MaWeiyu SheGeng WuJian YangDorji PhurbuHong-Chen JiangPublished in: Microorganisms (2021)
The distribution and diversity of sulfate/sulfite reduction prokaryotic (SRP) communities in hot springs from the Quzhuomu and Daggyai Geothermal Zone of Tibetan, China, was reported for the first time. In hot springs that are naturally hyperthermal and anoxic, the sulfur cycle is one of the most active cycles of the elements. The distribution of SRP in response to temperature is of great importance to the understanding of biogeochemical cycling of sulfur in geothermal features. Little is known about the SRP in geothermal zone. In this study, the diversity of SRP was investigated in the sediments from the Daggyai and Quzhuomu geothermal zone using PCR amplification, cloning and sequencing of the dissimilatory sulfite reductase beta subunit gene (dsrB). The abundance of dsrB and 16S rRNA genes, were determined by quantitative polymerase chain reactions. In addition, correlations of the SRP assemblages with environmental factors were analyzed by the aggregated boosted tree (ABT) statistical analysis. The results showed that SRP populations were diverse, but were mainly composed of Desulfobacterales, Desulfovibrionales, Syntrophobacterales, Clostridia and Nitrospirales, and large fraction (25%) of novel sequences have branched groups in the dsrB phylogenetic tree. In Quzhuomu geothermal zone, sulfate-rich hot springs are characterized by thick bacterial mats that are green or red and the SRP populations mainly appear at mid-temperature (50 °C to 70 °C). In low-sulfate hot springs in the Daggyai geothermal zone, although gray or pink streamers are widely formed at 60 °C to 80 °C, they prefer to inhabit in green mat at lower temperature (30 °C to 50 °C). With increasing temperature, the diversity of the dsrB gene at the OTU level (cutoff 97%) decreased, while its relative abundance increased. This result suggests that temperature played an important role in affecting dsrB gene distribution.