Using Liquid Crystals for In Situ Optical Mapping of Interfacial Mobility and Surfactant Concentrations at Flowing Aqueous-Oil Interfaces.
Sangchul RohMichael TsueiNicholas L AbbottPublished in: Langmuir : the ACS journal of surfaces and colloids (2021)
Flow-induced states of fluid interfaces decorated with amphiphiles underlie phenomena such as emulsification, foaming, and spreading. While past studies have shown that interfacial mass transfer, the kinetics of surfactant adsorption and desorption, interfacial mobility, and surfactant reorganization regulate the dynamic properties of surfactant-laden interfaces, few simple methods permit simultaneous monitoring of this interplay. Here, we explore the optical responses of micrometer-thick films of oils (4-cyano-4'-pentylbiphenyl, 5CB) with a liquid crystalline order in contact with flowing aqueous phases of soluble [e.g., sodium dodecyl sulfate (SDS)] or insoluble (e.g., 1,2-dilauroyl-sn-glycero-3-phosphocholine) amphiphiles. We observe the onset of flow of 0.5 mM SDS solutions within a millifluidic channel (area-average velocity of 200 mm/s) to transform a liquid crystal (LC) film with an alignment along the interface normal into a bright birefringent state (average LC tilt angle of 30°), consistent with an initially mobile interface that shears and thus tilts the LC along the flow direction. Subsequently, we observed the LC film to evolve to a steady state (over ∼10 s) with position-dependent optical retardance controlled by gradients in surfactant concentration and thus Marangoni stresses. For 0.5 mM SDS solutions, by using particle tracking and a simple hydrodynamic model, we reveal that the dominant role of the flow-induced interfacial surfactant concentration gradient is to change the mobility of the interface (and thus shear rate of LC) and not to change the easy axis (equilibrium orientation) or anchoring energy (orientation-dependent interfacial energy) of the LC. At lower surfactant concentrations (0.015 mM SDS), however, we show that the LC directly maps flow-induced interfacial surfactant concentration gradients via a change in the local easy axis of the LC. When combined with additional measurements obtained with simple salts and insoluble amphiphiles, these results hint that LC oils may offer the basis of general and facile methods that permit mapping of both interfacial mobilities and surfactant distributions at flowing interfaces.
Keyphrases
- ionic liquid
- simultaneous determination
- room temperature
- molecular dynamics simulations
- high resolution
- mass spectrometry
- high glucose
- liquid chromatography
- perovskite solar cells
- diabetic rats
- gene expression
- solid phase extraction
- reduced graphene oxide
- tandem mass spectrometry
- oxidative stress
- drug induced
- genome wide
- molecular dynamics
- single cell
- aqueous solution