Login / Signup

Platelets Inhibit Methicillin-Resistant Staphylococcus aureus by Inducing Hydroxyl Radical-Mediated Apoptosis-Like Cell Death.

Erxiong LiuYutong ChenJinmei XuShunli GuNing AnJiajia XinWenting WangZhixin LiuQunxing AnJing YiWen Yin
Published in: Microbiology spectrum (2022)
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most common drug-resistant bacteria and poses a significant threat to human health. Due to the emergence of multidrug resistance, limited drugs are available for the treatment of MRSA infections. In recent years, platelets have been reported to play important roles in inflammation and immune responses, in addition to their functions in blood hemostasis and clotting. We and other researchers have previously reported that platelets can inhibit Staphylococcus aureus growth. However, it remained unclear whether platelets have the same antibacterial effect on drug-resistant strains. In this study, we hypothesized that platelets may also inhibit the growth of MRSA; the results confirmed that platelets significantly inhibited the growth of MRSA in vitro . In a murine model of MRSA infection, we found that a platelet transfusion alleviated the symptoms of MRSA infection; in contrast, depletion of platelets aggravated infective symptoms. Moreover, we observed an overproduction of hydroxyl radicals in MRSA following platelet treatment, which induced apoptosis-like death of MRSA. Our findings demonstrate that platelets can inhibit MRSA growth by promoting the overproduction of hydroxyl radicals and inducing apoptosis-like death. IMPORTANCE The widespread use of antibiotics has led to the emergence of drug-resistant bacteria, particularly multidrug-resistant bacteria. MRSA is the most common drug-resistant bacterium that causes suppurative infections in humans. As only a limited number of drugs are available to treat the infections caused by drug-resistant pathogens, it is imperative to develop novel and effective biological agents for treating MRSA infections. This is the first study to show that platelets can inhibit MRSA growth in vitro and in vivo . Our results revealed that platelets enhanced the production of hydroxyl radicals in MRSA, which induced a series of apoptosis hallmarks in MRSA, including DNA fragmentation, chromosome condensation, phosphatidylserine exposure, membrane potential depolarization, and increased intracellular caspase activity. These findings may further our understanding of platelet function.
Keyphrases