Login / Signup

Automated high-throughput analysis of tramadol and O-desmethyltramadol in dried blood spots.

Marc LuginbühlStanislava AngelovaStefan GauglerAndreas LänginWolfgang Weinmann
Published in: Drug testing and analysis (2020)
The World Anti-Doping Agency (WADA) and the International Testing Agency (ITA) recently announced the development and implementation of dried blood spot (DBS) testing for routine analysis in time for the 2022 Winter Olympic and Paralympic Games in Beijing. Following the introduction of a ban on the use of tramadol in competition in March 2019, the Union Cycliste International (UCI) started a pilot study for the manual analysis of tramadol in DBS for antidoping purposes. In this context, we present a fully automated LC-MS/MS-based method with automated sample preparation using a CAMAG DBS-MS 500 for the analysis of tramadol and its metabolite O-desmethyltramadol in DBS. The presented approach reduces manual handling in the laboratory to an absolute minimum, only requiring the preparation of calibration and quality control DBS cards. The method was developed, optimized, and validated before performing cross-validation with a liquid blood-based analysis method using authentic samples from forensic cases. During the validation process, the method showed an extraction efficiency of 62%, linearity r2 > 0.99, accuracy and precision (within ± 15% and ± 20% at the LLOQ) for the determination of tramadol and O-desmethyltramadol. Method comparison in liquid blood with 26 samples showed good agreement (90 ± 19% for tramadol and 94 ± 14% for O-desmethyltramadol). In conclusion, automated analysis of tramadol and O-desmethyltramadol in DBS provides a fast and accurate solution for antidoping screening. It is suited for high-throughput analysis, having a run time of about 4 min per sample. Furthermore, with the automated approach, manual sample extraction becomes obsolete.
Keyphrases
  • high throughput
  • deep brain stimulation
  • deep learning
  • machine learning
  • quality control
  • single cell
  • healthcare
  • high resolution
  • mass spectrometry
  • molecularly imprinted