Login / Signup

Selective recording of physiologically evoked neural activity in a mixed autonomic nerve using a minimally invasive array.

Sophie C PaynePeregrine B OsborneAlex ThompsonCalvin D EiberJanet R KeastJames B Fallon
Published in: APL bioengineering (2023)
Real-time closed-loop control of neuromodulation devices requires long-term monitoring of neural activity in the peripheral nervous system. Although many signal extraction methods exist, few are both clinically viable and designed for extracting small signals from fragile peripheral visceral nerves. Here, we report that our minimally invasive recording and analysis technology extracts low to negative signal to noise ratio (SNR) neural activity from a visceral nerve with a high degree of specificity for fiber type and class. Complex activity was recorded from the rat pelvic nerve that was physiologically evoked during controlled bladder filling and voiding, in an extensively characterized in vivo model that provided an excellent test bed to validate our technology. Urethane-anesthetized male rats (n = 12) were implanted with a four-electrode planar array and the bladder instrumented for continuous-flow cystometry, which measures urodynamic function by recording bladder pressure changes during constant infusion of saline. We demonstrated that differential bipolar recordings and cross-correlation analyses extracts afferent and efferent activity, and discriminated between subpopulations of fibers based on conduction velocity. Integrated Aδ afferent fiber activity correlated with bladder pressure during voiding (r 2 : 0.66 ± 0.06) and was not affected by activating nociceptive afferents with intravesical capsaicin (r 2 : 0.59 ± 0.14, P  = 0.54, and n = 3). Collectively, these results demonstrate our minimally invasive recording and analysis technology is selective in extracting mixed neural activity with low/negative SNR. Furthermore, integrated afferent activity reliably correlates with bladder pressure and is a promising first step in developing closed-loop technology for bladder control.
Keyphrases