Login / Signup

Engineered Escherichia coli Consortia Function in a Programmable Pattern for Multiple Enzymatic Biosynthesis.

Wenxue ZhangHao DongXiaoli WangLiting ZhangChao ChenPing Wang
Published in: ACS applied materials & interfaces (2023)
Coordinating microbial consortia to realize complex synthetic pathways is an area of great interest in the rapidly growing field of biomanufacturing. This work presents a programmable method for assembling living cells based on the surface display of affinity groups, enabling whole-cell catalysis with optimized catalytic efficiency through the rational arrangement of cell assemblies and enzymes. In the context of d-phenyllactic acid (d-PLA) synthesis, four enzymes were rationally arranged considering substrate channeling and protein expression levels. The production efficiencies of d-PLA catalyzed by engineered microbial consortia were 1.31- and 2.55-fold higher than those of biofilm and whole-cell catalysts, respectively. Notably, substrate channeling was identified between the coimmobilized rate-limiting enzymes, resulting in a 3.67-fold improvement in catalytic efficiency compared with hybrid catalysts (free enzymes coupled with whole-cell catalysts). The highest yield of d-PLA catalyzed by microbial consortia was 102.85 ± 3.39 mM with 140 mM benzaldehyde as the substrate. This study proposes a novel approach to cell enzyme assembly for coordinating microbial consortia in multiple enzymatic biosynthesis processes.
Keyphrases