A light-induced decrease in the photochemical reflectance index (PRI) can be used to estimate the energy-dependent component of non-photochemical quenching under heat stress and soil drought in pea, wheat, and pumpkin.
Lyubov YudinaEkaterina SukhovaEkaterina GromovaVladimir NerushVladimir VodeneevVladimir S SukhovPublished in: Photosynthesis research (2020)
The remote sensing of a plant's physiological state is a key problem of precision agriculture. The photochemical reflectance index (PRI), which is based on the intensities of the reflected light at 531 and 570 nm, is an important tool for the remote sensing of photosynthetic processes in plants. In particular, the PRI can be strongly connected with the non-photochemical quenching of chlorophyll fluorescence (NPQ) and the quantum yield of photosystem II (ФPSII); however, this connection is dependent on illumination, the intensity of stressor actions, the time scale of measurements, etc. The aim of the present work was to analyze the connection of PRI with the energy-dependent component of NPQ (NPQF) and ФPSII under heating and soil drought conditions. Pea, wheat, and pumpkin seedlings, which were grown under controlled conditions, were investigated. A PAM fluorometer Dual-PAM-100 and spectrometer S-100 were used for measurements of photosynthetic parameters and PRI, respectively. It was shown that heat stress increased the NPQF and the magnitude of light-induced changes in PRI (ΔPRI) and decreased ФPSII in pea seedlings. The decreased ФPSII and increased ΔPRI were observed in wheat after heating, but significant changes in NPQF were absent; the significant decrease in ФPSII was observed in pumpkin seedlings, while there were no significant changes in the other parameters. ΔPRI and NPQF after heating were significantly correlated. However, a significant correlation of the absolute values of PRI with photosynthetic parameters was absent. The soil drought increased NPQF and the magnitude of ΔPRI and decreased ФPSII in peas. ΔPRI was strongly correlated with photosynthetic parameters, but this correlation was absent for the absolute value of PRI. Thus, ΔPRI is strongly connected with the magnitude of NPQF and can be used as an estimator of this parameter.