Magnetic microscopy of malarial hemozoin nanocrystals is performed by optically detected magnetic resonance imaging of near-surface diamond nitrogen-vacancy centers. Hemozoin crystals are extracted from Plasmodium falciparum-infected human blood cells and studied alongside synthetic hemozoin crystals. The stray magnetic fields produced by individual crystals are imaged at room temperature as a function of the applied field up to 350 mT. More than 100 nanocrystals are analyzed, revealing the distribution of their magnetic properties. Most crystals (96%) exhibit a linear dependence of the stray-field magnitude on the applied field, confirming hemozoin's paramagnetic nature. A volume magnetic susceptibility of 3.4 × 10-4 is inferred with use of a magnetostatic model informed by correlated scanning-electron-microscopy measurements of crystal dimensions. A small fraction of nanoparticles (4/82 for Plasmodium falciparum-produced nanoparticles and 1/41 for synthetic nanoparticles) exhibit a saturation behavior consistent with superparamagnetism. Translation of this platform to the study of living Plasmodium-infected cells may shed new light on hemozoin formation dynamics and their interaction with antimalarial drugs.
Keyphrases
- plasmodium falciparum
- room temperature
- molecularly imprinted
- electron microscopy
- ionic liquid
- induced apoptosis
- magnetic resonance imaging
- high resolution
- cell cycle arrest
- high throughput
- endothelial cells
- single molecule
- high speed
- computed tomography
- magnetic resonance
- solid phase extraction
- cell death
- cell proliferation
- signaling pathway
- walled carbon nanotubes