Login / Signup

Robust Laminated Anode with an Ultrathin Titanium Nitride Layer for High-Efficiency Top-Emitting Organic Light-Emitting Diodes.

Jia-Heng CaiQi-Sheng TianXiao-Zhao ZhuZhi-Hao QuWei HeDong-Ying ZhouLiang-Sheng Liao
Published in: Molecules (Basel, Switzerland) (2022)
The effective reflective anode remains a highly desirable component for the fabrication of reliable top-emitting organic light-emitting diodes (TE-OLEDs) which have the potential to be integrated with complementary metal-oxide-semiconductor (CMOS) circuits for microdisplays. This work demonstrates a novel laminated anode consisting of a Cr/Al/Cr multilayer stack. Furthermore, we implement an ultra-thin titanium nitride (TiN) layer as a protective layer on the top of the Cr/Al/Cr composite anode, which creates a considerably reflective surface in the visible range, and meanwhile improves the chemical stability of the electrode against the atmosphere or alkali environment. Based on [2-(2-pyridinyl-N)phenyl-C](acetylacetonate)iridium(III) as green emitter and Mg/Ag as transparent cathode, our TE-OLED using the TiN-coated anode achieves the maximum current efficiency of 71.2 cd/A and the maximum power efficiency of 66.7 lm/W, which are 81% and 90% higher than those of the reference device without TiN, respectively. The good device performance shows that the Cr/Al/Cr/TiN could function as a promising reflective anode for the high-resolution microdisplays on CMOS circuits.
Keyphrases