Login / Signup

Screen-printed electrochemical biosensor based on a ternary Co@MoS2/rGO functionalized electrode for high-performance non-enzymatic glucose sensing.

Xiao LiMan ZhangYujie HuJian XuDongke SunTao HuZhonghua Ni
Published in: Biomedical microdevices (2020)
In this study, cobalt oxides functionalized MoS2/reduced graphene oxide was synthesized via a facile one-pot hydrothermal approach. Morphology and crystal structure of this ternary nanoarchitecture were characterized through scanning electron microscopy, transmission electron microscopy, Raman spectra and X-ray photoelectron spectroscopy. An ultrasensitive non-enzymatic glucose sensor was developed by decorating this ternary nanohybrid on the working electrode of a screen-printed electrochemical sensor. Cycle sweep voltammetry and amperometry were used to study the electro-catalytic activity of the modified working electrode, which demonstrated superior catalytic activity towards glucose oxidation with an extremely low detection limit of 30 nM. Meanwhile, this sensor showed an excellent selectivity in the presence of interfering species such as uric acid, ascorbic acid, etc. Based on the screen-printed technique, enzyme mimic nanomaterials could be easily introduced into portable devices, which opens the way to take non-enzymatic glucose electrochemical sensing towards point-of-care.
Keyphrases