Bidens pilosa Extract Administered after Symptom Onset Attenuates Glial Activation, Improves Motor Performance, and Prolongs Survival in a Mouse Model of Amyotrophic Lateral Sclerosis.
Yasuhiro KosugeErina KanekoHiroshi NangoHiroko MiyagishiKumiko IshigeYoshihisa ItoPublished in: Oxidative medicine and cellular longevity (2020)
Amyotrophic lateral sclerosis (ALS) is a late-onset neurodegenerative disorder characterized by progressive paralysis resulting from the death of upper and lower motor neurons. There is currently no effective pharmacological treatment for ALS, and the two approved drugs riluzole and edaravone have limited effects on the symptoms and only slightly prolong the life of patients. Therefore, the development of effective therapeutic strategies is of paramount importance. In this study, we investigated whether Miyako Island Bidens pilosa (MBP) can alleviate the neurological deterioration observed in a superoxide dismutase-1 G93A mutant transgenic mouse (G93A mouse) model of ALS. We orally administered 2 g/kg/day of MBP to G93A mice at the onset of symptoms of neurodegeneration (15 weeks old) until death. Treatment with MBP markedly prolonged the life of ALS model mice by approximately 20 days compared to that of vehicle-treated ALS model mice and significantly improved motor performance. MBP treatment prevented the reduction in SMI32 expression, a neuronal marker protein, and attenuated astrocyte (detected by GFAP) and microglia (detected by Iba-1) activation in the spinal cord of G93A mice at the end stage of the disease (18 weeks old). Our results indicate that MBP administered after the onset of ALS symptoms suppressed the inflammatory activation of microglia and astrocytes in the spinal cord of the G93A ALS model mice, thus improving their quality of life. MBP may be a potential therapeutic agent for ALS.
Keyphrases
- amyotrophic lateral sclerosis
- spinal cord
- mouse model
- high fat diet induced
- late onset
- neuropathic pain
- spinal cord injury
- oxidative stress
- end stage renal disease
- inflammatory response
- nitric oxide
- newly diagnosed
- adipose tissue
- ejection fraction
- chronic kidney disease
- sleep quality
- skeletal muscle
- combination therapy
- prognostic factors
- protein protein
- amino acid
- atomic force microscopy
- free survival