A Rare Benzothiazole Glucoside as a Derivative of 'Albedo Bluing' Substance in Citrus Fruit and Its Antioxidant Activity.
Chao YangChuanxiu YuQiang LiLiangzhi PengChangpin ChunXiaolong TangSong LiuChengbo HuLili LingPublished in: Molecules (Basel, Switzerland) (2024)
'Albedo bluing' of fruits occurs in many varieties of citrus, resulting in a significant reduction in their commercial value. We first presented a breakthrough method for successfully extracting and purifying the 'albedo bluing' substance (ABS) from citrus fruits, resulting in the attainment of highly purified ABS. Then, HPLC and UPLC-QTOF-MS were used to prove that ABS in the fruits of three citrus varieties ( Citrus reticulate Blanco cv. 'Gonggan', 'Orah', and 'Mashuiju') are identical. However, the chemical structure of ABS remains elusive for many reasons. Fortunately, a more stable derivative of ABS (ABS-D) was successfully obtained. Through various analytical techniques such as HRESIMS, 1D and 2D NMR, and chemical shift calculation, ABS-D was identified as 2,4-dihydroxy-6-( β -D-glucopyranosyloxy)phenyl(5,6-dihydroxy-7-( β -D-glucopyranosyloxy)benzo[d]thiazol-2-yl)methanone, indicating that both ABS and its derivative belong to a rare category of benzothiazole glucosides. Furthermore, both ABS and ABS-D demonstrated potent antioxidant abilities. These findings lay the groundwork for further elucidating the chemical structure of ABS and the causative mechanism of the 'albedo bluing' phenomenon in citrus fruits.