Login / Signup

Geometrical frustration as a potential design principle for peptide-based assemblies.

Tao JiangElizabeth L MagnottiVincent P Conticello
Published in: Interface focus (2017)
Two-dimensional peptide and protein assemblies have been the focus of increased scientific research as they display significant potential for the creation of functional nanomaterials. Soluble subunits derived from a variety of protein motifs have been demonstrated to self-assemble into structurally defined nanosheets under environmentally benign conditions in which the components often retain their native structure and function. These types of two-dimensional assemblies may have an advantage for nanofabrication in that their extended planar shapes can be more straightforwardly incorporated into the current formats of nanoscale devices. However, significant challenges remain in the fabrication of these materials, particularly in devising methods to control the size, shape and internal structure of the resultant materials. Geometrical frustration may be envisioned as a possible mechanism to exert control over these structural parameters through rational design. While this objective has yet to be realized in practice, we discuss in this article the potential role of geometrical frustration as a principle to rationalize unusual self-assembly behaviour in several examples of two-dimensional peptide assemblies.
Keyphrases
  • healthcare
  • human health
  • protein protein
  • atomic force microscopy
  • climate change
  • highly efficient