Dimerization of Acetylene to Monovinylacetylene (MVA) by Bimetallic Zr/Cu Catalyst in Nieuwland Catalytic System.
Leng ZhengRuolin LinDingjie LuoLiang GuoJinli ZhangPublished in: Molecules (Basel, Switzerland) (2022)
Nieuwland catalyst is a key step in the dimerization of acetylene. Various zirconium metal additives incorporating Nieuwland catalysts were prepared, and their catalytic performances were assessed in acetylene dimerization. Different characterization techniques (i.e., thermogravimetric analysis, temperature-programmed reduction, X-ray diffraction, X-ray photoelectron spectroscopy, hydrogen ion concentration measurement and transmission electron microscopy) were employed in this study. The best catalytic performance was obtained over zirconium-acetylacetonate-incorporated Nieuwland catalysts, with an acetylene conversion of 53.3% and a monovinylacetylene selectivity of 87.4%. Based on these results, the zirconium acetylacetonate additive could reduce the types of transition state complexes, and it could also change the morphology of the catalyst. In addition, the additives could significantly inhibit the occurrence of trimerization products and polymers. Hence, the conversion of acetylene, monovinylacetylene selectivity, and stability of the Nieuwland catalysts were enhanced.