Login / Signup

SMARCA4 inactivation promotes lineage-specific transformation and early metastatic features in the lung.

Carla P ConcepcionSai MaLindsay M LaFaveArjun BhutkarManyuan LiuLydia P DeAngeloJonathan Y KimIsabella Del PrioreAdam J SchoenfeldManon MillerVinay K KarthaPeter M K WestcottFrancisco J Sánchez RiveraKevin MeliManav GuptaRoderick T BronsonGregory J RielyNatasha RekhtmanCharles M RudinCarla F KimAviv RegevJason D BuenrostroTyler Jacks
Published in: Cancer discovery (2021)
SMARCA4/BRG1 encodes for one of two mutually exclusive ATPases present in mammalian SWI/SNF chromatin remodeling complexes and is frequently mutated in human lung adenocarcinoma. However, the functional consequences of SMARCA4 mutation on tumor initiation, progression, and chromatin regulation in lung cancer remain poorly understood. Here, we demonstrate that loss of Smarca4 sensitizes CCSP+ cells within the lung in a cell-type dependent fashion to malignant transformation and tumor progression, resulting in highly advanced dedifferentiated tumors and increased metastatic incidence. Consistent with these phenotypes, Smarca4-deficient primary tumors lack lung lineage transcription factor activities and resemble a metastatic cell state. Mechanistically, we show that Smarca4 loss impairs the function of all three classes of SWI/SNF complexes, resulting in decreased chromatin accessibility at lung lineage motifs and ultimately accelerating tumor progression. Thus, we propose that the SWI/SNF complex - via Smarca4 - acts as a gatekeeper for lineage-specific cellular transformation and metastasis during lung cancer evolution.
Keyphrases