Design and Multiple Applications of Mixed-Ligand Metal-Organic Frameworks with Dual Emission.
Xue-Bo YinYi-Qing SunHua YuYue ChengCong WenPublished in: Analytical chemistry (2022)
Herein, we revealed the factors that affect the emission in mixed-ligand metal-organic frameworks (MOFs) with the combination of terephthalic acid (BDC), 2-aminoterephthalic acid (BDC-NH 2 ), and 2,5-dihydroxylterephthalic acid [BDC-(OH) 2 ] as models. The -NH 2 and -(OH) 2 groups change the π-conjugation and luminescence behaviors than BDC, so the ligands show different optical behaviors. The Zn 2+ ion with a 3d 10 full electronic structure shows little effect on the emission of the ligand and is selected as the metal node. We found that the emission of BDC is weak and incompatible to that of BDC-NH 2 , so only the emission of BDC-NH 2 was observed in the BDC/BDC-NH 2 -MOF. Crosstalk occurs between the emissions from BDC and BDC-(OH) 2 for the single emission from BDC/BDC-(OH) 2 -MOFs, even different ratios are selected. The MOFs prepared with BDC-NH 2 and BDC-(OH) 2 show dual emission at 450 and 550 nm, while the relative intensity was easily tuned with the ligand ratio and excitation wavelength. Thus, abundant optical behaviors and extensive applications were realized, including but not limited to (1) dual emission from single MOFs, (2) tunable color from blue to yellow with the excitation from 290 to 370 nm for information encryption and decryption, (3) white emission obtained under an excitation of 330 nm, and (4) response of -NH 2 groups to HCHO and Fe 3+ ions for ratiometric fluorescence sensing and visual detection. This work revealed the factors that affect the emission in mixed-ligand MOFs, studied their optical behaviors, and realized different applications with single MOFs.