An Annealing Accelerator for Ising Spin Systems Based on In-Memory Complementary 2D FETs.
Amritanand SebastianSarbashis DasSaptarshi DasPublished in: Advanced materials (Deerfield Beach, Fla.) (2021)
Metaheuristic algorithms such as simulated annealing (SA) are often implemented for optimization in combinatorial problems, especially for discreet problems. SA employs a stochastic search, where high-energy transitions ("hill-climbing") are allowed with a temperature-dependent probability to escape local optima. Ising spin glass systems have properties such as spin disorder and "frustration" and provide a discreet combinatorial problem with a high number of metastable states and ground-state degeneracy. In this work, subthreshold Boltzmann transport is exploited in complementary 2D field-effect transistors (p-type WSe2 and n-type MoS2 ) integrated with an analog, nonvolatile, and programmable floating-gate memory stack to develop in-memory computing primitives necessary for energy- and area-efficient hardware acceleration of SA for Ising spin systems. Search acceleration of >800× is demonstrated for 4 × 4 ferromagnetic, antiferromagnetic, and spin glass systems using SA compared to an exhaustive search using a brute force trial at miniscule total energy expenditure of ≈120 nJ. The hardware-realistic numerical simulations further highlight the astounding benefits of SA in accelerating the search for larger spin lattices.