Login / Signup

The potential role of the gut microbiota in shaping host energetics and metabolic rate.

Elle C LindsayNeil B MetcalfeMartin S Llewellyn
Published in: The Journal of animal ecology (2020)
It is increasingly recognized that symbiotic microbiota (especially those present in the gut) have important influences on the functioning of their host. Here, we review the interplay between this microbial community and the growth, metabolic rate and nutritional energy harvest of the host. We show how recent developments in experimental and analytical methods have allowed much easier characterization of the nature, and increasingly the functioning, of the gut microbiota. Manipulation studies that remove or augment gut microorganisms or transfer them between hosts have allowed unprecedented insights into their impact. Whilst much of the information to date has come from studies of laboratory model organisms, recent studies have used a more diverse range of host species, including those living in natural conditions, revealing their ecological relevance. The gut microbiota can provide the host with dietary nutrients that would be otherwise unobtainable, as well as allow the host flexibility in its capacity to cope with changing environments. The composition of the gut microbial community of a species can vary seasonally or when the host moves between environments (e.g. fresh and sea water in the case of migratory fish). It can also change with host diet choice, metabolic rate (or demands) and life stage. These changes in gut microbial community composition enable the host to live within different environments, adapt to seasonal changes in diet and maintain performance throughout its entire life history, highlighting the ecological relevance of the gut microbiota. Whilst it is evident that gut microbes can underpin host metabolic plasticity, the causal nature of associations between particular microorganisms and host performance is not always clear unless a manipulative approach has been used. Many studies have focussed on a correlative approach by characterizing microbial community composition, but there is now a need for more experimental studies in both wild and laboratory-based environments, to reveal the true role of gut microbiota in influencing the functioning of their hosts, including its capacity to tolerate environmental change. We highlight areas where these would be particularly fruitful in the context of ecological energetics.
Keyphrases
  • microbial community
  • antibiotic resistance genes
  • healthcare
  • climate change
  • dna methylation
  • weight loss
  • multidrug resistant
  • decision making
  • life cycle