Regeneration of cytosolic thiol peroxidases.
Lara VogelsangKarl-Josef DietzPublished in: Physiologia plantarum (2023)
Three soluble type two peroxiredoxins (PRXIIB, C, D) and two glutathione peroxidase-like enzymes (GPXL2, 8) reside in the cytosol of Arabidopsis thaliana cells and function both as thiol-dependent antioxidants and redox sensors. Their primary substrate is H 2 O 2 , but they also accept other peroxides with a distinct preference between PRXII and GPXL. Less known is their regeneration specificity in the light of the large set of thiol reductases, namely eight annotated thioredoxin h isoforms (TRXh1-5, 7-9), a few TRX-like proteins, including CxxS1 (formerly TRXh6) and several glutaredoxins (GRX) associated with the cytosol. This study addressed this open question by in vitro enzyme tests using recombinant protein. GPXL2 and 8 exclusively accepted electrons from the TRX system, namely TRXh1-5 and TDX, while PRXIIB/C/D were efficiently regenerated with GRXC1 and C2 but not the TRX-like protein Picot1. They showed significant but low activity (<3% of GRXC2) with TRXh1-5 and TDX. A similar reduction efficiency with TRX was seen in the insulin assay, only TDX was less active. Finally, the reduction of oxidized cytosolic malate dehydrogenase 1, as measured by regained activity, showed an extremely broad ability to accept electrons from different TRXs and GRXs. The results demonstrate redundancy and specificity in the redox regulatory network of the cytosol.
Keyphrases
- arabidopsis thaliana
- stem cells
- induced apoptosis
- type diabetes
- structural basis
- minimally invasive
- cell cycle arrest
- transcription factor
- amino acid
- hydrogen peroxide
- high throughput
- wound healing
- signaling pathway
- adipose tissue
- binding protein
- endoplasmic reticulum stress
- low density lipoprotein
- skeletal muscle
- low cost
- metabolic syndrome
- cell proliferation
- insulin resistance
- single cell