Login / Signup

Solution-Processed n-Type Graphene Doping for Cathode in Inverted Polymer Light-Emitting Diodes.

Sung-Joo KwonTae-Hee HanYoung-Hoon KimTowfiq AhmedHong-Kyu SeoHobeom KimDong Jin KimWentao XuByung Hee HongJian-Xin ZhuTae-Woo Lee
Published in: ACS applied materials & interfaces (2018)
n-Type doping with (4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl) dimethylamine (N-DMBI) reduces a work function (WF) of graphene by ∼0.45 eV without significant reduction of optical transmittance. Solution process of N-DMBI on graphene provides effective n-type doping effect and air-stability at the same time. Although neutral N-DMBI act as an electron receptor leaving the graphene p-doped, radical N-DMBI acts as an electron donator leaving the graphene n-doped, which is demonstrated by density functional theory. We also verify the suitability of N-DMBI-doped n-type graphene for use as a cathode in inverted polymer light-emitting diodes (PLEDs) by using various analytical methods. Inverted PLEDs using a graphene cathode doped with N-DMBI radical showed dramatically improved device efficiency (∼13.8 cd/A) than did inverted PLEDs with pristine graphene (∼2.74 cd/A). N-DMBI-doped graphene can provide a practical way to produce graphene cathodes with low WF in various organic optoelectronics.
Keyphrases