Mitochondrial defects triggered by amg-1 mutation elicit UPRmt and phagocytic clearance during spermatogenesis in C. elegans.
Peng WangLianwan ChenNing WangLong MiaoYanmei ZhaoPublished in: Development (Cambridge, England) (2024)
Mitochondria are the powerhouses of many biological processes. During spermatogenesis, post-transcriptional regulation of mitochondrial gene expression is mediated by nuclear-encoded mitochondrial RNA-binding proteins (mtRBPs). We identified AMG-1 as an mtRBP required for reproductive success in C. elegans. amg-1 mutation led to defects in mitochondrial structure and sperm budding, resulting in mitochondria being discarded into residual bodies (RBs), which ultimately delayed spermatogenesis in the proximal gonad. In addition, mitochondrial defects triggered the gonadal mitochondrial unfolded protein response and phagocytic clearance to ensure spermatogenesis but ultimately failed to rescue hermaphroditic fertility. These findings reveal a previously undiscovered role for AMG-1 in regulating C. elegans spermatogenesis, in which mitochondrial-damaged sperm prevented the transmission of defective mitochondria to mature sperm by budding and phagocytic clearance, which may also exist in the reproductive systems of higher organisms.