Login / Signup

Light-driven molecular trap enables bidirectional manipulation of dynamic covalent systems.

Michael KathanFabian EisenreichChristoph JurissekAndre DallmannJohannes GurkeStefan Hecht
Published in: Nature chemistry (2018)
Bond formation between two molecular entities in a closed system strictly obeys the principle of microscopic reversibility and occurs in favour of the thermodynamically more stable product. Here, we demonstrate how light can bypass this fundamental limitation by driving and controlling the reversible bimolecular reaction between an N-nucleophile and a photoswitchable carbonyl electrophile. Light-driven tautomerization cycles reverse the reactivity of the C=O/C=N-electrophiles ('umpolung') to activate substrates and remove products, respectively, solely depending on the illumination wavelength. By applying either red or blue light, selective and nearly quantitative intermolecular bond formation/scission can be achieved, even if the underlying condensation/hydrolysis equilibrium is thermodynamically disfavoured. Exploiting light-driven in situ C=N exchange, our approach can be used to externally regulate a closed dynamic covalent system by actively and reversibly removing specific components, resembling a molecular and bidirectional version of a macroscopic Dean-Stark trap.
Keyphrases
  • molecular dynamics
  • mass spectrometry
  • energy transfer