Login / Signup

Thermoelectric Power of a Single van der Waals Interface between Carbon Nanotubes.

Hiromu HamasakiYifei LiMasato OhnishiJunichiro ShiomiKazuhiro YanagiKaori Hirahara
Published in: ACS nano (2023)
Control of van der Waals interfaces is crucial for fabrication of nanomaterial-based high-performance thermoelectric devices because such interfaces significantly affect the overall thermoelectric performances of the device due to their relatively high thermal resistance. Such interfaces could induce different thermoelectric power from the bulk, i.e., interfacial thermoelectric power. However, from a macroscopic point of view, a correct evaluation of the interfacial thermoelectric power is difficult owing to various interface configurations. Therefore, the study of the thermoelectric properties at a single interface is crucial to address this problem. Herein, we used in situ transmission electron microscopy and nanomanipulation to investigate the thermoelectric properties of carbon nanotubes and their interfaces. The thermoelectric power of the bridged carbon nanotubes was individually measured. The existence of the interfacial thermoelectric power was determined by systematically changing the contact size between the two parallel nanotubes. The effect of interfacial thermoelectric power was qualitatively supported by Green's function calculations. When the contact length between two parallel nanotubes was less than approximately 100 nm, the experimental results and theoretical calculations indicated that the interface significantly contributed to the total thermoelectric power. However, when the contact length was longer than approximately 200 nm, the total thermoelectric power converged to the value of a single nanotube. The findings herein provide a basis for investigating thermoelectric devices with controlled van der Waals interfaces and contribute to thermal management in nanoscale devices and electronics.
Keyphrases
  • carbon nanotubes
  • ionic liquid
  • mass spectrometry
  • high resolution
  • molecular dynamics
  • atomic force microscopy
  • electron transfer