Comparison between high definition FT-IR, Raman and AFM-IR for subcellular chemical imaging of cholesteryl esters in prostate cancer cells.
Maciej RomanTomasz P WrobelCzesława PaluszkiewiczWojciech M KwiatekPublished in: Journal of biophotonics (2020)
The family of vibrational spectroscopic imaging techniques grows every few years and there is a need to compare and contrast new modalities with the better understood ones, especially in the case of demanding biological samples. Three vibrational spectroscopy techniques (high definition Fourier-transform infrared [FT-IR], Raman and atomic force microscopy infrared [AFM-IR]) were applied for subcellular chemical imaging of cholesteryl esters in PC-3 prostate cancer cells. The techniques were compared and contrasted in terms of image quality, spectral pattern and chemical information. All tested techniques were found to be useful in chemical imaging of cholesterol derivatives in cancer cells. The results obtained from FT-IR and Raman imaging showed to be comparable, whereas those achieved from AFM-IR study exhibited higher spectral heterogeneity. It confirms AFM-IR method as a powerful tool in local chemical imaging of cells at the nanoscale level. Furthermore, due to polarization effect, p-polarized AFM-IR spectra showed strong enhancement of lipid bands when compared to FT-IR.