Login / Signup

ADR-2 regulates fertility and oocyte fate in C. elegans.

Emily A ErdmannMelanie ForbesMargaret BeckerSarina PerezHeather A Hundley
Published in: Genetics (2024)
RNA binding proteins play essential roles in coordinating germline gene expression and development in all organisms. Here, we report that loss of ADR-2, a member of the Adenosine DeAminase acting on RNA (ADAR) family of RNA binding proteins and the sole adenosine-to-inosine RNA editing enzyme in C. elegans, can improve fertility in multiple genetic backgrounds. First, we show that loss of RNA editing by ADR-2 restores normal embryo production to subfertile animals that transgenically express a vitellogenin (yolk protein) fusion to green fluorescent protein. Using this phenotype, a high-throughput screen was designed to identify RNA binding proteins that when depleted yield synthetic phenotypes with loss of adr-2. The screen uncovered a genetic interaction between ADR-2 and SQD-1, a member of the heterogenous nuclear ribonucleoprotein (hnRNP) family of RNA binding proteins. Microscopy, reproductive assays, and high-throughput sequencing reveal that sqd-1 is essential for the onset of oogenesis and oogenic gene expression in young adult animals, and that loss of adr-2 can counteract the effects of loss of sqd-1 on gene expression and rescue the switch from spermatogenesis to oogenesis. Together, these data demonstrate that ADR-2 can contribute to the suppression of fertility and suggest novel roles for both RNA editing-dependent and independent mechanisms in regulating embryogenesis.
Keyphrases