Login / Signup

Removal of Plastics from Micron Size to Nanoscale Using Wood Filter.

Min LiGonggang LiuChongqing WangShanshan ChangJin-Bo Hu
Published in: Materials (Basel, Switzerland) (2024)
Plastic pollution, particularly microplastic (MP) and nanoplastic (NP) pollution, has become a significant concern. This study explores the use of porous wood for filtration to remove MPs and NPs and investigates their removal mechanisms. Undecorated fir wood with a thickness of 4 mm achieves a 91% removal rate for model polystyrene (PS) MPs (2.6 μm) at a water flux of 198 L/m 2 h. However, its separation performance for NPs (255.8 and 50.9 nm) is poor. It also shows that fir wood (coniferous wood) has a higher PS removal rate than poplar wood (hard wood). With poly dimethyl diallyl ammonium chloride (PDDA) modification, both MPs and NPs are effectively removed, with NPs' removal rate increasing from <10% to 90% for PDDA/wood. Characterization results reveal that size-exclusive interception dominates for micron-sized particles, and electrostatic interaction is crucial for nanosized particles. Additionally, intercepted NPs have been used as a strong binder for hot-pressed wood to remarkably enhance the mechanical properties of wood, suggesting a novel recycle utilization of discarded wood filters. Overall, this renewable wood material offers a simple solution for tackling MP/NP pollution.
Keyphrases
  • cell wall
  • heavy metals
  • particulate matter
  • genome wide
  • gene expression
  • dna methylation
  • human health
  • mass spectrometry
  • liquid chromatography
  • ionic liquid