The Antimicrobial Peptide Cathelicidin Exerts Immunomodulatory Effects via Scavenger Receptors.
Ryo AmagaiToshiya TakahashiHitoshi TeruiTaku FujimuraKenshi YamasakiSetsuya AibaYoshihide AsanoPublished in: International journal of molecular sciences (2023)
An active form of cathelicidin antimicrobial peptide, LL-37, has immunomodulatory and stimulatory effects, though the specific pathways are not clear. The purpose of this study was to identify the cellular pathways by which LL-37 amplifies the inflammation induced by damage-associated molecular patterns (DAMPs). We performed DNA microarray, reverse transcription polymerase chain reaction, immunoblotting, and proximity ligation assays using cultured keratinocytes treated with LL-37 and/or the DAMP poly(I:C), a synthetic double-stranded RNA. In contrast to the combination of LL-37 and poly(I:C), LL-37 alone induced genes related to biological metabolic processes such as VEGFA and PTGS2 (COX-2). Inhibition of FPR2, a known receptor for cathelicidin, partially suppressed the induction of VEGFA and PTGS2. Importantly, VEGFA and PTGS2 induced by LL-37 alone were diminished by the knockdown of scavenger receptors including SCARB1 (SR-B1), OLR1 (SR-E1), and AGER (SR-J1). Moreover, LL-37 alone, as well as the combination of LL-37 and poly(I:C), showed proximity to the scavenger receptors, indicating that LL-37 acts via scavenger receptors and intermediates between them and poly(I:C). These results showed that the broad function of cathelicidin is generally dependent on scavenger receptors. Therefore, inhibitors of scavenger receptors or non-functional mock cathelicidin peptides may serve as new anti-inflammatory and immunosuppressive agents.