Login / Signup

Zr-MOFs Integrated with a Guest Capturer and a Photosensitizer for the Simultaneous Adsorption and Degradation of 4-Chlorophenol.

Wenliang ZhangMing GongJian YangJinlou Gu
Published in: Langmuir : the ACS journal of surfaces and colloids (2021)
A bifunctional metal-organic framework (MOF) was successfully designed to realize the purification of 4-chlorophenol (4-CP) under simulated sunlight irradiation. Owing to the large-size mesopores of the MOF matrix NU-1000, β-CMCD (carboxylic β-cyclodextrin) could be incorporated into the frameworks with a density of 2.4% to pre-enrich the pollutant of 4-CP. Meanwhile, the photodegradation promoter [Pd(II) meso-tetra(4-carboxyphenyl)porphine] was in situ co-assembled with the organic ligand to realize its synchronous degradation. As for the current integrator, a Langmuir model was used to explain the adsorption isotherm, and the Langmuir-Hinshelwood model exhibited a better fit to its catalytic degradation behavior. Thanks to the simultaneous presence of a capturer and a photodegradation promoter, the adsorption capacity of 4-CP reached as high as 296 mg g-1, which was further completely detoxified within 60 min under simulated sunlight irradiation with a half-life time of only 5.98 min. Such excellent integrated decontamination properties prefigure the great promising potential of multifunctional MOFs in the field of pollution purification.
Keyphrases