Login / Signup

Surfactant Mediated Accelerated and Discriminatory In Vitro Drug Release Method for PLGA Nanoparticles of Poorly Water-Soluble Drug.

Ritu GuptaYuan ChenMahua SarkarHuan Xie
Published in: Pharmaceuticals (Basel, Switzerland) (2022)
In vitro drug release testing is an important quality control tool for formulation development. However, the literature has evidence that poly-lactide-co-glycolide (PLGA)-based formulations show a slower in vitro drug release than a real in vivo drug release. Much longer in vitro drug release profiles may not be reflective of real in vivo performances and may significantly affect the timeline for a formulation development. The objective of this study was to develop a surfactant mediated accelerated in vitro drug release method for the PLGA nanoparticles (NPs) of a novel chemotherapeutic agent AC1LPSZG, a model drug with a poor solubility. The Sotax USP apparatus 4 was used to test in vitro drug release in a phosphate buffer with a pH value of 6.8. The sink conditions were improved using surfactants in the order of sodium lauryl sulfate (SLS) < Tween 80 < cetyltrimethylammonium bromide (CTAB). The dissolution efficiency (DE) and area under the dissolution curve (AUC) were increased three-fold when increasing the CTAB concentration in the phosphate buffer (pH 6.8). Similar Weibull release kinetics and good linear correlations (R2~0.99) indicated a good correlation between the real-time in vitro release profile in the phosphate buffer (pH 6.8) and accelerated release profiles in the optimized medium. This newly developed accelerated and discriminatory in vitro test can be used as a quality control tool to identify critical formulation and process parameters to ensure a batch-to-batch uniformity. It may also serve as a surrogate for bioequivalence studies if a predictive in vitro in vivo correlation (IVIVC) is obtained. The results of this study are limited to AC1LPSZG NPs, but a similar consideration can be extended to other PLGA-based NPs of drugs with similar properties and solubility profiles.
Keyphrases
  • drug release
  • drug delivery
  • quality control
  • water soluble
  • systematic review
  • emergency department
  • drug induced
  • oxide nanoparticles