Login / Signup

Framework for Vehicle Make and Model Recognition-A New Large-Scale Dataset and an Efficient Two-Branch-Two-Stage Deep Learning Architecture.

Yangxintong LyuIonut SchiopuBruno CornelisAdrian Munteanu
Published in: Sensors (Basel, Switzerland) (2022)
In recent years, Vehicle Make and Model Recognition (VMMR) has attracted a lot of attention as it plays a crucial role in Intelligent Transportation Systems (ITS). Accurate and efficient VMMR systems are required in real-world applications including intelligent surveillance and autonomous driving. The paper introduces a new large-scale dataset and a novel deep learning paradigm for VMMR. A new large-scale dataset dubbed Diverse large-scale VMM (DVMM) is proposed collecting image-samples with the most popular vehicle brands operating in Europe. A novel VMMR framework is proposed which follows a two-branch architecture performing make and model recognition respectively. A two-stage training procedure and a novel decision module are proposed to process the make and model predictions and compute the final model prediction. In addition, a novel metric based on the true positive rate is proposed to compare classification confusion of the proposed 2B-2S and the baseline methods. A complex experimental validation is carried out, demonstrating the generality, diversity, and practicality of the proposed DVMM dataset. The experimental results show that the proposed framework provides 93.95% accuracy over the more diverse DVMM dataset and 95.85% accuracy over traditional VMMR datasets. The proposed two-branch approach outperforms the conventional one-branch approach for VMMR over small-, medium-, and large-scale datasets by providing lower vehicle model confusion and reduced inter-make ambiguity. The paper demonstrates the advantages of the proposed two-branch VMMR paradigm in terms of robustness and lower confusion relative to single-branch designs.
Keyphrases
  • deep learning
  • machine learning
  • artificial intelligence
  • public health
  • convolutional neural network
  • minimally invasive
  • mass spectrometry