Aptamer-Based Enforced Phosphatase-Recruiting Chimeras Inhibit Receptor Tyrosine Kinase Signal Transduction.
Shanchao WuYanxue ShangYuping YanAili ZhouTao BingZilong ZhaoWeihong TanPublished in: Journal of the American Chemical Society (2024)
Aberrant phosphorylation of receptor tyrosine kinases (RTKs) is usually involved in tumor initiation, progression, and metastasis. However, developing specific and efficient molecular tools to regulate RTK phosphorylation remains a considerable challenge. In this study, we reported novel aptamer-based chimeras to inhibit the phosphorylation of RTKs, such as c-Met and EGFR, by enforced recruitment of a protein tyrosine phosphatase receptor type F (PTPRF). Our studies revealed that aptamer-based chimeras displayed a generic and potent inhibitory effect on RTK phosphorylation induced by growth factor or auto-dimerization in different cell lines and modulated cell biological behaviors by recruiting PTPRF. Furthermore, based on angstrom accuracy of the DNA duplex, the maximum catalytic radius of PTPRF was determined as ∼25.84 nm, providing a basis for the development of phosphatase-recruiting strategies. Taken together, our study provides a generic methodology not only for selectively mediating RTK phosphorylation and cellular biological processes but also for developing novel therapeutic drugs.