Morphological, Microstructural, and In Situ Chemical Characteristics of Siderite Produced by Iron-Reducing Bacteria.
Xiaohua HanFuxian WangShiling ZhengHao QiuYan LiuJian WangNicolas MenguyEric LeroyJulie BourgonAndreas KapplerFanghua LiuYongxin PanJinhua LiPublished in: Environmental science & technology (2024)
Dissimilatory iron-reducing bacteria (DIRB) oxidize organic matter or hydrogen and reduce ferric iron to form Fe(II)-bearing minerals, such as magnetite and siderite. However, compared with magnetite, which was extensively studied, the mineralization process and mechanisms of siderite remain unclear. Here, with the combination of advanced electron microscopy and synchrotron-based scanning transmission X-ray microscopy (STXM) approaches, we studied in detail the morphological, structural, and chemical features of biogenic siderite via a growth experiment with Shewanella oneidensis MR-4. Results showed that along with the growth of cells, Fe(II) ions were increasingly released into solution and reacted with CO 3 2- to form micrometer-sized siderite minerals with spindle, rod, peanut, dumbbell, and sphere shapes. They are composed of many single-crystal siderite plates that are fanned out from the center of the particles. Additionally, STXM revealed Fh and organic molecules inside siderite. This suggests that the siderite crystals might assemble around a Fh-organic molecule core and then continue to grow radially. This study illustrates the biomineralization and assembly of siderite by a successive multistep growth process induced by DIRB, also provides evidences that the distinctive shapes and the presence of organic molecules inside might be morphological and chemical features for biogenic siderite.