Login / Signup

Oviposition Preference of the American Hoverfly, Eupeodes americanus , between Banker Plants and Target Crops.

Noémie GonzalezArlette FauteuxJean-Christophe LouisRosemarije BuitenhuisÉric Lucas
Published in: Insects (2023)
Assessing the oviposition preferences of predatory hoverflies is a key factor in the prediction of the success of these biological control agents against aphids in greenhouses, especially when using banker plant systems or in mixed-crop contexts. In this study, two aspects of the oviposition preferences of the American hoverfly, Eupeodes americanus (Wiedemann, 1830) (Diptera: Syrphidae), were evaluated. Firstly, the preference between the banker plant and the target crop was evaluated for three banker plant species (barley, finger millet, or corn) and two target crops (cucumber or pepper). Secondly, the preference between the same two target crops was assessed. Female oviposition preferences were evaluated via two-choice experiments using different plant/aphid systems. The results showed that, for the cucumber crops, the species of banker plant used drastically influenced the oviposition preference of the hoverfly, with a preference for barley over cucumber, cucumber over finger millet, and no preference between corn and cucumber. Unlike cucumber, when used with pepper, barley engendered a preference for the target crop. We conclude that the barley banker plant could be adequate for aphid control in pepper but not in cucumber crops. In a mixed-crop context, the American hoverfly had no preference between cucumber and pepper, which means it has the potential to protect both crops in a mixed-crop greenhouse context. This study shows that the banker plant system should be carefully chosen according to the crops/aphids present in the greenhouse to optimize the impact of the hoverfly as a biocontrol agent. Further work is required to confirm this choice of banker plant in semifield or field testing.
Keyphrases
  • climate change
  • aedes aegypti
  • cell wall
  • decision making
  • risk assessment
  • genetic diversity