Login / Signup

Deep Learning Applications to Classification and Detection of Age-Related Macular Degeneration on Optical Coherence Tomography Imaging: A Review.

Neslihan Dilruba KoseogluAndrzej GrzybowskiT Y Alvin Liu
Published in: Ophthalmology and therapy (2023)
Age-related macular degeneration (AMD) is one of the leading causes of blindness in the elderly, more commonly in developed countries. Optical coherence tomography (OCT) is a non-invasive imaging device widely used for the diagnosis and management of AMD. Deep learning (DL) uses multilayered artificial neural networks (NN) for feature extraction, and is the cutting-edge technique for medical image analysis for diagnostic and prognostication purposes. Application of DL models to OCT image analysis has garnered significant interest in recent years. In this review, we aimed to summarize studies focusing on DL models used in classification and detection of AMD. Additionally, we provide a brief introduction to other DL applications in AMD, such as segmentation, prediction/prognostication, and models trained on multimodal imaging.
Keyphrases