Login / Signup

Mitigation of Nitrogen Losses in a Plant-Soil System through Incorporation of Nanocellulose and Zinc-Modified Nanocellulose.

Paul E AikpokpodionBenjamin S HsiaoChristian O Dimkpa
Published in: Journal of agricultural and food chemistry (2024)
Most nitrogen (N) applied to plants as fertilizer is lost through leaching. Here, nanocellulose was used in mitigating N leaching loss. Lettuce-cropped soil was treated with unmodified or Zn-modified nanocellulose (1-2% by wt) in combination with NPK, compared with urea and NPK-only treatments. Consecutive leaching, plant growth, plant N uptake, and soil nitrogen retention were assessed. Nanocellulose + NPK significantly ( p ≤ 0.05) reduced N leaching, compared with urea and NPK-only. 1-and-2 wt % nanocellulose, as well as Zn-modified 1-and-2 wt % nanocellulose, reduced N leaching by 45, 38, 39, and 49% compared with urea and by 43, 36, 37, and 47% compared with NPK-only, respectively. Nitrogen leached mainly as NO 3 - (98.4%). Compared with urea and NPK, lettuce shoot mass was significantly ( p ≤ 0.05) increased by 30-42% and by 44-57%, respectively, by all nanocellulose treatments, except for the Zn-modified 1 wt % nanocellulose. Leached N negatively correlated to biomass yield. Soil N retention was enhanced by the pristine and Zn-modified nanocelluloses between 27 and 94%. Demonstrably, nanocellulose can be utilized for mitigating N loss in soil and supporting crop production, resource management, and environmental sustainability.
Keyphrases
  • heavy metals
  • plant growth
  • sewage sludge
  • municipal solid waste
  • climate change
  • wastewater treatment
  • oxide nanoparticles