Microbial Biodeterioration of Cultural Heritage: Events, Colonization, and Analyses.
Abhishek NegiIndira P SarethyPublished in: Microbial ecology (2019)
Geochemical cycles result in the chemical, physical, and mineralogical modification of rocks, eventually leading to formation of soil. However, when the stones and rocks are a part of historic buildings and monuments, the effects are deleterious. In addition, microorganisms also colonize these monuments over a period of time, resulting in formation of biofilms; their metabolites lead to physical weakening and discoloration of stone eventually. This process, known as biodeterioration, leads to a significant loss of cultural heritage. For formulating effective conservation strategies to prevent biodeterioration and restore monuments, it is important to know which microorganisms are colonizing the substrate and the different energy sources they consume to sustain themselves. With this view in scope, this review focuses on studies that have attempted to understand the process of biodeterioration, the mechanisms by which they colonize and affect the monuments, the techniques used for assessment of biodeterioration, and conservation strategies that aim to preserve the original integrity of the monuments. This review also includes the "omics" technologies that have started playing a large role in elucidating the nature of microorganisms, and how they can play a role in hastening the formulation of effective conservation strategies.