Login / Signup

Extraction of 5-Hydroxymethylfurfural and Furfural in Aqueous Biphasic Systems: A COSMO-RS Guided Approach to Greener Solvent Selection.

Dominik Soukup-CarnePablo López-PorfiriFelipe Sanchez BragagnoloCristiano Soleo FunariXiaolei FanMaría González-MiquelJesús Esteban
Published in: ACS sustainable chemistry & engineering (2024)
5-Hydroxymethylfurfural (HMF) and furfural (Fur) are promising biobased platform chemicals, derived from the dehydration of carbohydrate feedstocks, normally conducted in an aqueous phase. Plagued by side-reactions in such phase, such as the rehydration to levulinic acid (LA) and formic acid (FA) or self-condensation to humins, HMF and Fur necessitates diversification from monophasic aqueous reaction systems toward biphasic systems to mitigate undesired side-reactions. Here, a methodology based on the COnductor-like Screening MOdel for Real Solvents (COSMO-RS) method was used to screen solvent candidates based on the predicted partition coefficients ( K i ). Hansen solubility parameters in conjunction with excess thermodynamic quantities determined by COSMO-RS were employed to assess solvent compatibility. Experimental validation of the COSMO-RS values highlighted only minor deviations from the predictions with root-mean-square-error (RMSE) values of HMF and Fur at 0.76 and 5.32, respectively, at 298 K. The combined effort suggested cyclohexanone, isophorone, and methyl isobutyl ketone (MIBK) as the best candidates. Finally, extraction solvent reuse demonstrated cyclohexanone suitability for HMF extraction with K HMF of 3.66 and MIBK for Fur with K Fur 7.80 with consistent partitioning across four total runs. Both solvents are classified as recommended by the CHEM21 solvent selection guide, hence adding to the sustainability of the process.
Keyphrases
  • ionic liquid
  • high throughput
  • wastewater treatment