Login / Signup

In-Situ Ultrafast Construction of Zinc Tungstate Interface Layer for Highly Reversible Zinc Anodes.

Jin CaoHaiyang WuDongdong ZhangDing LuoLulu ZhangXuelin YangJiaqian QinGuanjie He
Published in: Angewandte Chemie (International ed. in English) (2024)
Constructing artificial solid electrolyte interface on the Zn anode surface is recognized as an appealing method to inhibit zinc dendrites and side reactions, whereas the current techniques are complex and time-consuming. Here, a robust and zincophilic zinc tungstate (ZnWO 4 ) layer has been in situ constructed on the Zn anode surface (denoted as ZWO@Zn) by an ultrafast chemical solution reaction. Comprehensive characterizations and theoretical calculations demonstrate that the ZWO layer can effectively modulate the interfacial electric field distribution and promote the Zn 2+ uniform diffusion, thus facilitating the uniform Zn 2+ nucleation and suppressing zinc dendrites. Besides, ZWO layer can prevent direct contact between the Zn/water and increase the hydrogen evolution reaction overpotential to eliminate side reactions. Consequently, the in situ constructed ZWO layer facilitates remarkable reversibility in the ZWO@Zn||Ti battery, achieving an impressive Coulombic efficiency of 99.36 % under 1.0 mA cm -2 , unprecedented cycling lifespan exceeding 1800 h under 1.0 mA cm -2 in ZWO@Zn||ZWO@Zn battery, and a steady and reliable operation of the overall ZWO@Zn||VS 2 battery. The work provides a simple, low cost, and ultrafast pathway to crafting protective layers for driving advancements in aqueous zinc-metal batteries.
Keyphrases
  • heavy metals
  • oxide nanoparticles
  • low cost
  • risk assessment
  • wastewater treatment
  • ion batteries
  • molecular dynamics