Login / Signup

Novelty processing associated with neural beta oscillations improves recognition memory in young and older adults.

Tineke K SteigerAlexandra SobczakRamona ReinekeNico Bunzeck
Published in: Annals of the New York Academy of Sciences (2022)
Novelty anticipation activates the mesolimbic system and promotes subsequent long-term memory in younger adults. Importantly, mesolimbic structures typically degenerate with age, which might reduce positive effects of novelty anticipation. Here, we used electroencephalography in combination with an established paradigm in healthy young (19-33 years old, n = 28) and older (53-84, n = 27) humans. Colored cues predicted the subsequent presentation of either a novel or previously familiarized image (75% cue validity). On the subsequent day, recognition memory for the novel images was tested. Behaviorally, novelty anticipation improved recollection-based but not familiarity-based recognition memory in both groups, and this effect was more pronounced in older subjects. Furthermore, novelty and familiarity cues increased theta (4-8 Hz) and decreased alpha/beta power (9-20 Hz); at outcome, expected novel and familiar images both increased beta power (13-25 Hz). Finally, a subsequent memory effect for expected novel images was associated with increases in beta power independent of age. Together, novelty anticipation drives hippocampus-dependent long-term recognition memory across the life span, and this effect appears to be related to neural beta oscillations.
Keyphrases